If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6z^2=15
We move all terms to the left:
6z^2-(15)=0
a = 6; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·6·(-15)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{10}}{2*6}=\frac{0-6\sqrt{10}}{12} =-\frac{6\sqrt{10}}{12} =-\frac{\sqrt{10}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{10}}{2*6}=\frac{0+6\sqrt{10}}{12} =\frac{6\sqrt{10}}{12} =\frac{\sqrt{10}}{2} $
| 3(4x+1)=-5(5x-4)-3x | | 2(3x+5)=-3(2x-5)+4x | | 9x^2-18x-80=4 | | 33+3x=99 | | 4(5x+3)=-5(2x-5)-3x | | 56=t+71 | | m/(m+5)=(1/(m^2+6m+5))+(5/(m^2+6m+5)) | | 4m+5=12m | | 8x²+4x-12=-8 | | -3+4x+1+3x=1-2x+4 | | 2(3x+2)=-5(2x-2)-3x | | 1/4w-1/3=2/3 | | 3(4x+3)=-4(4x-5)+5x | | 4(1-x)+3x=-2(x=1) | | 5(4x+1)=-3(3x-5)-2x | | 0=d^2-20d+64 | | 4/5x-3/5x+4=11 | | 0=d^2-20d-64 | | 4(4x+1)=-2(5x-5)-5x | | 0=d^2-20d-80 | | 5x+11=x-(-5) | | z–18=-20 | | 5(4x+1)=-4(4x-3)-3x | | 2n-10=-8 | | 8(x−3)+14=2(−5+3x)+2x | | -(.2t^2-20t+375)=0 | | 2(5x+3)=-3(2x-3)+2x | | 3n^2+3n-60=0 | | 2(5x+2)=-2(5x-3)+3x | | 2w-2=10 | | 2(3x+1)=-4(3x-1)-3x | | 2(2x+2)=-2(2x-3)-5x |